Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 256: 116282, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626615

RESUMO

Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world's population. Establishing a rapid, precise, and automated platform for H. pylori diagnosis is an urgent clinical need and would significantly benefit therapeutic intervention. Recombinase polymerase amplification (RPA)-CRISPR recently emerged as a promising molecular diagnostic assay due to its rapid detection capability, high specificity, and mild reaction conditions. In this work, we adapted the RPA-CRISPR assay on a digital microfluidics (DMF) system for automated H. pylori detection and genotyping. The system can achieve multi-target parallel detection of H. pylori nucleotide conservative genes (ureB) and virulence genes (cagA and vacA) across different samples within 30 min, exhibiting a detection limit of 10 copies/rxn and no false positives. We further conducted tests on 80 clinical saliva samples and compared the results with those derived from real-time quantitative polymerase chain reaction, demonstrating 100% diagnostic sensitivity and specificity for the RPA-CRISPR/DMF method. By automating the assay process on a single chip, the DMF system can significantly reduce the usage of reagents and samples, minimize the cross-contamination effect, and shorten the reaction time, with the additional benefit of losing the chance of experiment failure/inconsistency due to manual operations. The DMF system together with the RPA-CRISPR assay can be used for early detection and genotyping of H. pylori with high sensitivity and specificity, and has the potential to become a universal molecular diagnostic platform.


Assuntos
Técnicas Biossensoriais , Técnicas de Genotipagem , Infecções por Helicobacter , Helicobacter pylori , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Humanos , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Genótipo , Proteínas de Bactérias/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Microfluídica/métodos , Antígenos de Bactérias/genética , Antígenos de Bactérias/análise , DNA Bacteriano/genética , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Recombinases/metabolismo
2.
Lab Chip ; 20(16): 3001-3010, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32697260

RESUMO

Biofunctionalized quantum dots (QDs) are effective target fluorescent labels for bioimaging. However, conventional synthesis of biofunctionalized I-III-VI core-shell CuInS2/ZnS QDs requires complex bench-top operations, resulting in limited product performance and variety, and is not amenable to a 'one-step' approach. In this work, we have successfully demonstrated a fully automated method for preparing denatured bovine serum albumin (dBSA)-CuInS2/ZnS QDs by introducing microfluidic (MF) chips to synthesize biofunctionalized QDs, hence establishing a 'one-step' procedure. We have also studied and optimized the reaction synthesis parameters. The emission wavelength of the dBSA-CuInS2/ZnS QDs is located in the near-infrared range and can be tuned from 650 to 750 nm by simply varying the reaction parameters. In addition, the 'one-step'-synthesized dBSA-CuInS2/ZnS QDs have a long average fluorescence lifetime of 153.76 ns and a small particle size of 5 ± 2 nm. To demonstrate the applicability of the 'one-step'-synthesized dBSA-CuInS2/ZnS QDs in bioimaging studies, we modified the QDs with folic acid and hyaluronic acid, and then performed target bioimaging and cytotoxicity tests on macrophages, liver cancer cells and pancreatic cancer cells. The cell images show that the red emission signals originate from the QDs, which indicates that the dBSA-CuInS2/ZnS QDs prepared by the MF approach are suitable optical contrast agents for target bioimaging. This 'one-step' MF-based QD synthesis approach could serve as a rapid, cost-effective, and small-scale nanocrystal production platform for complex QD formulations for a wide range of bioapplications.


Assuntos
Pontos Quânticos , Microfluídica , Sulfetos , Compostos de Zinco
3.
Biomed Res Int ; 2019: 2025636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341890

RESUMO

Chronic obstructive pulmonary disease (COPD) and lung cancer, closely related to smoking, are major lung diseases affecting millions of individuals worldwide. The generated gas mixture of smoking is proved to contain about 4,500 components such as carbon monoxide, nicotine, oxidants, fine particulate matter, and aldehydes. These components were considered to be the principle factor driving the pathogenesis and progression of pulmonary disease. A large proportion of lung cancer patients showed a history of COPD, which demonstrated that there might be a close relationship between COPD and lung cancer. In the early stages of smoking, lung barrier provoked protective response and DNA repair are likely to suppress these changes to a certain extent. In the presence of long-term smoking exposure, these mechanisms seem to be malfunctioned and lead to disease progression. The infiltration of inflammatory cells to mucosa, submucosa, and glandular tissue caused by inhaled cigarette smoke is responsible for the destruction of matrix, blood supply shortage, and epithelial cell death. Conversely, cancer cells have the capacity to modulate the proliferation of epithelial cells and produce of new vascular networks. Comprehension understanding of mechanisms responsible for both pathologies is necessary for the prevention and treatment of COPD and lung cancer. In this review, we will summarize related articles and give a glance of possible mechanism between cigarette smoking induced COPD and lung cancer.


Assuntos
Remodelação das Vias Aéreas , Barreira Alveolocapilar , Fumar Cigarros , Matriz Extracelular , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Barreira Alveolocapilar/metabolismo , Barreira Alveolocapilar/patologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Fumar Cigarros/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fatores de Tempo
4.
Beilstein J Nanotechnol ; 10: 22-31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680276

RESUMO

Biological applications of core/shell near-infrared quantum dots (QDs) have attracted broad interest due to their unique optical and chemical properties. Additionally, the use of multifunctional nanomaterials with near-infrared QDs and plasmonic functional nanoparticles are promising for applications in electronics, bioimaging, energy, and environmental-related studies. In this work, we experimentally demonstrate how to construct a multifunctional nanoparticle comprised of CdSe/ZnS QDs and gold nanorods (GNRs) where the GNRs were applied to enhance the photoluminescence (PL) of the CdSe/ZnS QDs. In particular, we have obtained the scattering PL spectrum of a single CdSe/ZnS QD and GNR@CdSe/ZnS nanoparticle and comparison results show that the CdSe/ZnS QDs have an apparent PL enhancement of four-times after binding with GNRs. In addition, in vitro experimental results show that the biostability of the GNR@CdSe/ZnS nanoparticles can be improved by using folic acid. A bioimaging study has also been performed where GNR@CdSe/ZnS nanoparticles were used as an optical process for MCF-7 breast cancer cells.

5.
Sci Rep ; 3: 2730, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24060937

RESUMO

Herein, we describe a novel integrated biosensor for performing dielectric spectroscopy to analyze biological samples. We analyzed biomolecule samples with different concentrations and demonstrated that the solution's impedance is highly correlated with the concentration, indicating that it may be possible to use this sensor as a concentration sensor. In contrast with standard spectrophotometers, this sensor offers a low-cost and purely electrical solution for the quantitative analysis of biomolecule solutions. In addition to determining concentrations, we found that the sample solution impedance is highly correlated with the length of the DNA fragments, indicating that the sizes of PCR products could be validated with an integrated chip-based, sample-friendly system within a few minutes. The system could be the basis of a rapid, low-cost platform for DNA characterization with broad applications in cancer and genetic disease research.


Assuntos
Técnicas Biossensoriais , DNA/análise , DNA/química , Impedância Elétrica , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas , Soluções
6.
Zhonghua Yi Xue Za Zhi ; 87(38): 2710-3, 2007 Oct 16.
Artigo em Chinês | MEDLINE | ID: mdl-18167251

RESUMO

OBJECTIVE: To investigate the protein expression of p21-activated kinase 1 gene (PAK1) in bladder transitional cell carcinoma (BTCC) and its clinico-pathological significance. METHODS: Immunohistochemistry and TUNEL were used, in combination with tissue microarray technique, to examine the protein expression of PAK1 and status of cell apoptosis in 100 BTCC tissue specimens obtained during operation and 30 specimens of adjacent normal bladder mucosa. RESULTS: All adjacent normal bladder mucosa specimens were negative in PAK1 protein expression or only with a low-level expression of PAK1 protein, while 58% of the BTCC specimens showed over-expression of PAK1. PAK1 expression was significantly associated with tumor pathological grade and tumor size (both P < 0.05). The PAK1 overexpression rate of the poorly-differentiated BTCC specimens (at the G3 stage) was 78%, significantly higher than that of the well-differentiated specimens (at the stage G1/G2, 47%, P = 0.05). The PAK1 overexpression rate of the large-sized BTCC specimens (>or= 3 cm in diameter) was 73%, significantly higher than that of the small-sized BTCC specimens (< 3 cm in diameter, P = 0.034). The PAK1 protein expression was negatively correlated with the apoptotic index of the cells (P < 0.05). CONCLUSION: Overexpression of PAK1 protein may via its anti-apoptotic function to play an important role in the development and progression of BTCC. Overexpression of PAK1 in BTCC is associated closely with tumor malignant histological phenotype and it may be used as a molecular marker to predicate the malignant potential of BTCC.


Assuntos
Carcinoma de Células de Transição/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Quinases Ativadas por p21/biossíntese , Apoptose , Carcinoma de Células de Transição/patologia , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA